

The European Sensor Systems Cluster (ESSC)

European Sensor Systems Cluster - ESSC Vision, Objectives, Strategies, Priorities, Challenges and Roadmap Cluster sponsored and observed by EC DG Research and Innovation AMA Conference 2015 - SENSOR+TEST Trade Fair Room Tunis, Session Time: 12:00 - 13:30 Nuremberg/Germany, 19 May 2015

Preliminary Roadmap – WG Inputs

Andreas Schütze – WG2 Indoor Air Quality

schuetze@LMT.uni-saarland.de

LMT, Saarland University, Saarbrücken -Germany

The European Sensor-Systems Cluster (ESSC) **AGENDA** of the **KICK-OFF MEETING ESSC** <u>Tuesday 19 May 2015 - Session time: 12.00 - 13.30</u>

Session Chair: Dr. Thomas Simmons, AMA Sensorik eV, Germany			
12.00 - 12.05	Welcome Address: Dr. Thomas Simmons, Steering Committee Member, AMA Sensorik eV		
12.05 - 12.20	Video Chat from Brussels with DG R&I Officer: Dr. Hans-Hartmann Pedersen		
12.20 - 12.35	Vision, Objectives and Position Paper: Dr. Michele Penza, Chairman of ESSC, ENEA, Italy		
12.35 - 12.50	Membership and Future Plans: Dr. Rudolf Frycek, Coach of ESSC, Amires, Switzerland		
12.50 - 13.05	Preliminary Roadmap and WGs Inputs: Prof. Andreas Schuetze, Steering Committee Member, Saarland University, Germany		
13.05 - 13.15	Other Notes from ESSC Steering Committee Members		
13.15 - 13.30	Discussion: Question and Answer with Audience		
13.30	Conclusions		

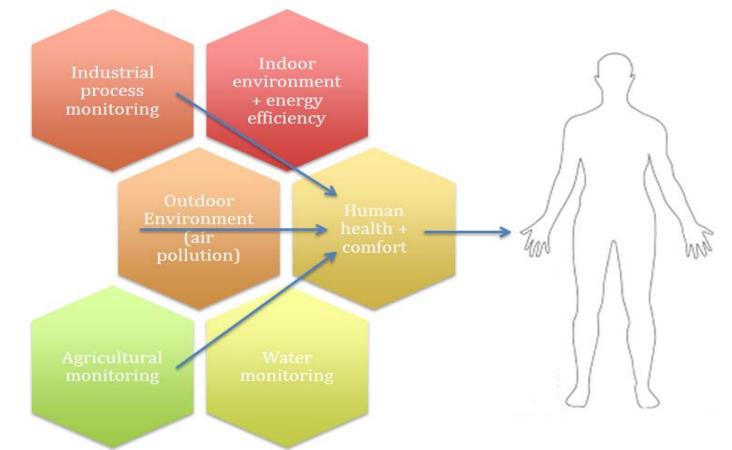
www.cluster-essc.eu

The European Sensor Systems Cluster

European

GOVERNANCE: ESSC Steering Committee

- Chairman of ESSC: Michele Penza, ENEA, Italy
- Coach of ESSC: Rudolf Frycek, Amires, Switzerland
- EC Observer: Hans Hartmann Pedersen (EC Officer), DG R&I, Belgium


Environmental Sensors	 D. Diamond
Indoor Air Quality	A. Schütze (O. Martimort)
Health Monitoring and Comfort Sensors	P. Galvin (A. Prina Mello)
Monitoring of Industrial Processes	• T. Mayr
Sensor Integration and Commercialization	O. Martimort
Dissemination and Outreach	 T. Simmons (Eurice)

VISION OF ESSC

ESSC Key Areas:

- Environmental Sustainability
- •Energy Efficiency
- •Health Monitoring
- •Comfort
- Industrial Applications

Roadmap approach – example WG2

Background: define scope and goals relating to sensor systems

- •Scope of Indoor Air Quality
 - Health
 - Comfort
 - Productivity
 - Building integrity and value
- •Indoor air quality covers a great variety of application scenarios
- Indoor air quality in buildings is closely connected to energy consumption
- •Sensor systems measuring IAQ can have several purposes
 - Purely informative, i.e. indoor weather station
 - Prove compliance with regulations on long term average exposure
 - Give active feedback and advise to people ("open the window to ventilate")
 - Actively control IAQ as part of a complex system to control dilution with outdoor air and possibly also active air treatment

→ Define priority topics and R&D requirements

R&D topics – WG1 Environmental Sensors – prelim.

Cross Cutting Topics

- Driving Down Costs of Analysis
- Understanding and Controlling Biofouling
- •Harnessing the Power of Cloud Informatics
- •Air Quality Joint-Exercises
- \rightarrow Sensors Performance Compared to Reference Analyzers
- Material-based Solutions for Living Sensors Eco-Innovation
- → combining natural species (e.g., lichens, moss, higher species) with traditional transducers (e.g., optical, electrical, capacitive, gravimetric, etc.)

WG Specific Topics

- •Studying Gases in the Environment
- •Improved platforms for Characterizing the Marine Environment
- •Autonomous Analyzers for Freshwater/Waste Water Analysis
- •Migrating Analytical Instruments from the Lab to the Field
- •Improved Sensing Platforms for Urban Air Quality Monitoring
- •Chemical Weather Forecasting and Environmental Sensors Informatics

R&D topics – WG2 Indoor Air Quality – prelim.

Cross Cutting Topics

- Development of a Comprehensive Air Quality Index WG1
- •Odor Nuisance Monitoring for Comprehensive (I)AQ Assessment
- Integrate Mobile Sensor Systems into (I)AQ Networks cf. WG1
 → primarily smartphones and wearables

WG Specific Topics

- •IAQ User Interface allowing easy understanding and individual tailoring
- Connect Outdoor and Indoor Air Quality for Demand Controlled Ventilation WG1
- •Bio-chemical Sensor Systems for Mold Detection WG1
- Detection & quantification of volatile organic compounds
 → benzene, formaldehyde, naphthalene at ppb levels (WHO limits!)

R&D topics – WG3 Health Monitoring & Comfort –Cross Cutting Topicsprelim.

- •Multiparameter sensing
- Internet of things / Internet of everything cf. WG1/2
- Energy management / Energy harvesting
- Sensor system design

WG Specific Topics

- •Data management and integration into EMRs (Electronic Medical Records)
- •Biocompatibility (wearable and implantable sensor systems)
- •Detection & quantification of volatile organic compounds (breath analysis)
- Detection of single cells in complex media
- •Sensors for tissue identification and characterization
- Non-contact sensing platforms for physiological monitoring
- Integration of sensors into organ-on-chip systems
- •Development of disposable imaging system

R&D topics – WG4 Industrial Process Monitoring – prelim.

Integration

- Driving Down Costs of Analysis cf. WG1
- •Robust and selective sensor materials
- Understanding and Controlling Biofouling cf. WG1

Harnessing the Power of Cloud Informatics – cf. WG1

WG Specific Topics

•On- or inline control of process parameters complementary to physical sensors: enable measurement of additional chemical parameters beyond pH and oxygen Sensors showing compatibility with GMP and PAT

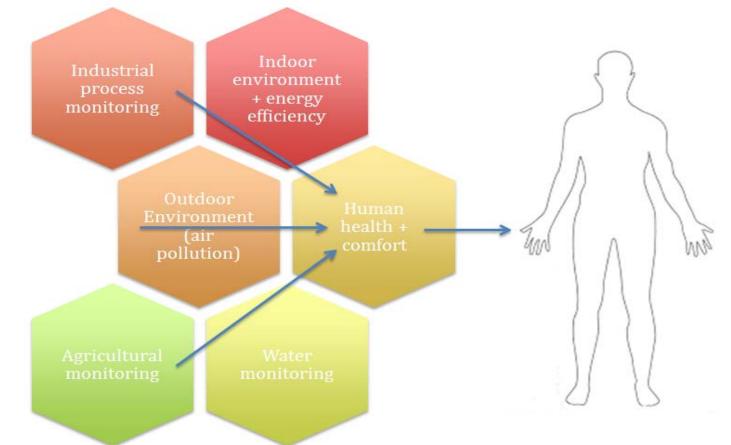
- •Miniaturized and cheap measurement systems for widespread deployment in industrial processes
- •Smart and intelligent process control system based on chemical sensor data
- •Process intensification and optimization using new sensors and data
- •Facilitating and accelerating upscaling and downscaling using sensor data
- •Capability of cleaning in place (CIP) and sterilization (steam, γ-rays, e-beam, ...)

R&D topics – WG5 Integration & Commercialization – prelim.

Integration

- Sensor SMD package standardization
- \rightarrow pin-to-pin compatibility
- Generic sensor and sensor system ASIC
- \rightarrow data acquisition and processing, store sensor specific calibration data and further information (cf. IEEE 1451, TEDS: transducer electronic data sheet)

Commercialization


- •Upscaling calibration from laboratory to mass production
- Cost and size reduction
- Modularity and flexibility
- \rightarrow also see integration topics
- •Quality of measures
- \rightarrow allowing users to understand and compare sensor system performance
- Interoperability

mmission

VISION OF ESSC

ESSC Key Areas:

- Environmental Sustainability
- •Energy Efficiency
- •Health Monitoring
- •Comfort
- Industrial Applications

The European Sensor Systems Cluster (ESSC)

11

Register with ESSC & provide your input!

Environmental Sensors	D. Diamond
Indoor Air Quality	A. Schütze (O. Martimort)
Health Monitoring and Comfort Sensors	 P. Galvin (A. Prina Mello)
Monitoring of Industrial Processes	• T. Mayr
Sensor Integration and Commercialization	O. Martimort

ESSC roadmap to be presented at EUROSENSORS 2015 (Sept. 6-9, Freiburg)